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1 Project Description

1.1 Motivation

Low-level optimization in Artificial Intelligence (AI) is of paramount importance in resource-constrained settings.
In a world dominated by big data and deep learning, performance is often bottlenecked by resource constraints
and a lack of access to compute power, as opposed to model complexity or data quality. For instance, in tactical
edge computing system deployed by the military [I1] or in our everyday mobile devices becoming equipped with
machine learning [2], computational resources constrain the ability to use modern state-of-the-art AT models due to
processing power, memory, and communication limitations. C++ has emerged as a predominant language for its
static-typing and fine-grained memory control, and statistics such as the CPPJoules Energy Measurement Tool [§],
based on Intel’s Running Average Power Limit (RAPL) interface, have emerged predominant in recent literature
to directly quantify real-world energy consumption (which is rapidly increasing for recent large-language models).
We seek to implement a fine-grained C++ library, evaluated on all paradigms of Al to demonstrate C++ as a
tenable approach to accomplish programatically a diverse array of Al experiments.

1.2 Project Introduction

Here, we initially proposed a project that aimed to implement a low-level, optimized C++ library that is equipped
to run complex AT algorithms, and we evaluate its robustness using experiments from all spheres of Al, including
Machine, Reinforcement, and Deep Learning. Section 1 will be dedicated to introducing all of these models
and explaining their underlying implementations. In Section 2, we discuss the non-trivial Artificial Intelligence
applications we did, each of which combines and makes use of models in a non-trivial way, so as to evaluate and
confirm the rigor of our implementation. A summary of our implemented models can be found in Table

Category

Algorithm

Description / Use Case

Linear Models

Perceptron
Linear Regression
Logistic Regression

Vanilla SVM

Early binary classifier using a
linear decision boundary.
Predicts continuous values with

a linear relationship.
Binary classification using the

sigmoid function.
Maximizes margin for linear

classification.

Non-Linear

Kernel SVM

Non-linear SVM using kernel

Extensions trick (e.g., RBF).

Random Fourier SVM Approximates kernel SVM using
random Fourier features for
speed.

Unsupervised k-Means Clustering Partition data into k groups
Learning based on similarity.

PCA (Principal Component
Analysis)

Dimensionality reduction and
feature decorrelation.

Instance-Based
Learning

k-Nearest Neighbors (k-NN)

Classifies based on majority
vote of nearest neighbors.

Neural Approaches

Neural Networks

Deep learning models with
multiple layers and
nonlinearities.

Reinforcement
Learning

e-Greedy MAB

UCB (Upper Confidence
Bound) MAB

Deep Q-Network (DQN)

Policy Gradient
(REINFORCE)

Balances exploration and

exploitation via random action.
Selects arms using upper

confidence intervals for efficient

exploration.

Uses deep neural nets to
approximate Q-values for
decision making.

Optimizes policy directly using
Monte Carlo estimates.

Table 1: Overview of implemented algorithms in the custom machine learning library.



We implement all of the above from scratch in c++ in hopes of better understanding what low-level optimization
looks like in practice and to gain finer-grained control over memory and runtime optimizations.

1.3 Binary-Classification/Regression Algorithms

We first implemented standard binary-classification algorithms with linear decision boundaries, such as Perceptron,
Logistic Regression, and Vanilla SVM. Vanilla SVM is the most sophisticated of these as it maximizes the hyperplane
between the two classes. Because practical use cases are not entirely linearly separable, we use hinge loss with a
tunable parameter C' € R to allow for "hard” versus ”"soft” decision boundaries to be learned. As an extension to
this, we implemented kernelization for SVMs to allow for nonlinear data to also be separated. This leverages the
kernel trick, where some function ¢ gives the inner product between two vectors v, w € R? for some d € N, rather
than defining an explicit higher-dimensional projection. This allows for non-linearly-separable data to be projected
into a higher dimension, where it may be separable by a linear hyperplane.

For regression, we implement linear regression, which fits a linear model to the data by optimizing against the
Mean-Squared Error (MSE).

1.4 Unsupervised/Instance-Based Learning Algorithms

We implemented both k-NN and k-means. In particular, k-NN classifies a new test point by computing the binary
label of the k nearest neighbors and taking a majority vote. Conversely, k-means does not need labeled data, and
starting with randomly initialized centroids, it computes the means of the k nearest data points, shifts the centroid
to that mean, and continues until the centroids converge (typically occurs within 500 iterations).

Principal Component Analysis is useful for projecting data down from a higher dimension. The eigenvectors of some
linear transformation A € R™*™ give the principal components, which correspond to eigenvalue magnitude. For
numerical stability purposes, we compute the top d eigenvectors using the more sophisticated Householder Reflection
[5] algorithm, as opposed to more standard approaches like Gram-Schmidt. This is because normalization of vectors
can become extremely sensitive to small numbers, and convergence becomes severely inhibited. Using the top d
eigenvectors (principal components), a projection matrix W € R¥*" is formed, and WA € R?*™ induces a new
linear transformation that projects data from the original dimension to a lower dimension d < m. The principal
components are used due to preserving the highest amount of variance within the data.

1.5 Reinforcement Learning Algorithms

The goal of reinforcement learning is to learn some policy 7y parameterized by 6 where the agent acts over an
environment with a predefined state and action space and learns how to act to optimize the accumulated reward.

1.5.1 Deep Q-Network
The @ function (or action-value function) is induced by a particular policy 7. In particular, it is given as:

o0
Q" (s,a) =E, Z'ytrt_H | so =s,a0 =a (1)
t=0
This allows us to precisely quantify an agent’s performance as it gives the expected reward given that we are
in a state s and take action a, and then we act in expectation thereafter. The optimal policy 7* has a Q-function
is given by Q*(s,a) = max, Q"(s,a) = Q™ (s, a), which we seek to learn.
In small environments (e.g. with discrete, small state and action spaces), the Q-function is actually tractable and
can be computed directly. This would be called tabular Q-learning. Here, we implement the nonlinear variant, deep
Q-learning [6], which attempts to learn the Q-function via a neural network. Given some state s;, it is embedded
as a d-dimensional vector and pushed through a neural network to obtain Q(s,a),Va € A, where A is the action
space.
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Figure 1: Deep Q-Learning graphic

We first initialize our neural network with randomly initialized weights 6. The network induces a policy 7 given
by m(s) = argmax,Q(s,a). In our environment, we can unroll our policy to obtain {s;,a;,r;}*,, where N is the
length of the trajectory. Then, using[I} we compute the label y; = r; + vy max, Q' (s¢11,a’;0’), which is an estimate
of the optimal Q-function. Our optimization problem thus simplifies to the squared loss (Q(s, as; 0) — y¢)?, which
we can do gradient descent over. There are two nuances here:

1. We do not use @ to compute y; because then we have the 'moving target problem.’ In particular, a network
Q is trying to optimize against itself, which does not work in practice. To combat this, a target network @’
parameterized by 6’ is used, and it is updated every fixed-length of iterations to match Q. [6]

2. When training, we use a replay buffer to sample past experiences {s;, a¢, 7} uniformly. This is to prevent the
network from forgetting how to act earlier on, especially later in training when those reward signals are no
longer being seen.

1.5.2 Policy Gradient (REINFORCE)

With Deep Q-Networks, we induced a policy 7 with the learned intermediary Q(s,a). Policy Gradient attempts
to learn the gradient of the policy with estimates of the gradient using REINFORCE [I0], and then to do gradient
ascent directly to maximize the objective.

In particular, we rollout a trajectory 7 to obtain 7 = {s¢, as, rt}N . Then, at each timestep ¢, we have the 'reward-to-
go’ Gy = Z,f:t 7v*~tr. We define the objective as J(0) = Er, [G¢], i.e. maximizing in expectation the cumulative
reward we can get. According to the Policy-Gradient Theorem [9], Vo J(0) = E, [Vologma(as | s¢)Gy].

We can thus train a neural network 7y parameterized by 6 so that given some state s;, the outputs are the
probabilities associated with taking each a;. Using REINFORCE, we optimize 6 by estimating VyJ(#) and doing
gradient ascent.

1.5.3 e-Greedy Multi-Armed Bandit

Multi-Armed Bandits (MABs) refer to a setting where there is an agent that has to pull an arm {a1,...,a}, each
of which return variable rewards r;. Unknowing of the reward distributions for each arm, the agent is tasked with
learning a policy of which arms to pull in order to maximize reward.

e-Greedy MABs are a simple, yet effective MAB that are parameterized with some € € [0,1]. At timestep ¢, the
MAB pulls a random arm with probability € and keeps track of the average rewards from each arm it sees. With
probability 1 — €, the agent acts greedily, pulling the arm that has given it the highest average reward so far.
In summary, the agent is doing exploration, and aims to eventually learn the distribution of each reward arm
effectively enough so as to commit to a singular arm. We implemented e-Greedy MABs with a decay factor so that
as the agent better learns the reward distributions, € decays and the agent acts more greedily.

1.5.4 Upper Confidence Bound Multi-Armed Bandit

Upper Confidence Bound (UCB) MABs are a more sophisticated approach to learning a policy for which arms to
pull. Just like e-Greedy, UCB keeps track of the estimated reward for arm ¢ up to timestep ¢, denoted as fi;(¢). But,
the agent also keeps track of the number of times it has pulled arm 4, denoted as N;(t), and computes the upper



confidence boun i(t) = i(t) + ——. At timestep ¢, the agent selects a; for which a; = max; i(t).
fidence bound UCB 1 X At ti t, th 1 for which UCB

Per the formulation above, it can be seen that the more times an arm is pulled, the higher N;(¢) becomes, thereby
reducing the upper-confidence bound. Over time, the upper-confidence bounds will become closer to the true means
u for each arm 1.

1.6 Deep Learning Algorithms

For Deep Learning, we implement standard neural networks, in particular, the Multi-Layer Perceptron (MLP). We
limit the scope of our architecture to be alternating linear and nonlinear layers, ending with a linear layer. We allow
for variable lengths in input and layer lengths. For weight initializations, we use the popular He Initializations [4],
which work well with sigmoid activation layers.

For optimization, we implemented back propagation using the algorithm [I] presented in Figure

Algorithm Backward Pass through MLP (Detailed)

1: Input: {zl',... z[H}, {alll,...,al"}, loss gradient %

2. 6 = 62IELI = 62[%] SZ[[I;]I = B(Z[ELJ @a[L]I(a[L]) > Error term
3: for/ =L to1do

4 S0 = 25 83‘:;1[]” = ol(zl-1)T > Gradient of weights
5: a?:ﬁ[fl = a‘Zf[:,] gz[[i]] = [l > Gradient of biases
6: azt?fl] = 62\%] 623[111] = (WHH)T4ll

o S = gl = i S = (WH)T6M) 0 ol 2l )

8: end for

9: Output: Wgﬁ’ B_tﬁle

Figure 2: Backpropagation algorithm through an MLP.

The loss gradient with respect to the final layer outputs is given to specify which loss to optimize. For op-
timization, we implemented mini-batch stochastic gradient descent by allowing the gradients to accumulate and
normalizing over the batch size.

2 Evaluation

We designed and developed four distinct and nontrivial Al experiments to evaluate the capabilities of each of our
models above and to verify the rigor of our low-level design.

2.1 N-Dimensional TicTacToe Agent

We developed an environment for both 3 x 3 and 4 x 4 TicTacToe and trained with both of our policy methods
DQN and Policy Gradient to obtain autonomous agents to play the game. In particular, we developed a reward
function that would reward signals of different magnitudes based on blocks, wins, losses, and draws. A summary
of the models evaluated with this experiment is given in Table

Model How it is Used in the Experiment
DQN (Deep Q-Network) The DQN is used to train an agent to play TicTacToe
by approximating the Q-function.
Policy Gradient (REINFORCE) The REINFORCE algorithm is used to optimize the
policy directly by adjusting the probability distribu-
tion of actions based on the rewards received.
Neural Networks (Backpropagation) | Neural networks, using backpropagation, are em-
ployed to represent the Q-function for DQN and the
policy m(a; | s¢) for Policy Gradient.

Table 2: Models Used in TicTacToe AI Experiment and Their Application



We examined the affects of €gecay, B = Batch Size, o = Learning Rate, and A = Q-Network Architecture
We now discuss each experiment. In the description for each experiment, we will start by stating the parameters
that were fixed and the values of the parameter that was varied. We then will interpret the results of the experiment.

2.1.1 €gecay affect on training trajectory

First, we examined the effect of €gecay on model performance over 1000 training episodes. The results can be seen
in Figure

Model Performance Across Different Epsilon Decay Values
Win Rate Over Training Episodes (Smoothed)

Win Rate (%)
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Figure 3: Enter Caption

In this experiment, the following parameters were fixed: B = 64, a = 0.0001, U = 10, €start = 0.9, €enqg = 0.001,
~v=0.9, £ =10000, A =18 — 32 = ReLU — 32 — ReLU — 9. €qecay varies in:

€decay € {0.5,0.7,0.8,0.9,0.97,0.98,0.99, 0.99995}

The agents with smaller €gecay values—specifically 0.5, 0.7, and 0.8—demonstrate the fastest improvement in win
rate. These agents quickly transition from exploration to exploitation, allowing them to capitalize on learned
strategies early in training. As a result, their win rates rise sharply and plateau at high values (above 90%)
within the first few thousand episodes. This rapid improvement with minimal exploration aligns with Tic-tac-
toe’s inherent simplicity. Given the game’s small state space and straightforward winning patterns, extensive
exploration is unnecessary. The agents with intermediate decay values, such as 0.9, 0.97, 0.98, and 0.99, also
achieve high win rates, but their improvement is more gradual. These agents balance exploration and exploitation
more conservatively, leading to a slower but steady increase in performance. They eventually reach similar win
rates as the fastest-rising agents, but require more episodes to do so. On the other hand, the agent with the
slowest decay (Edecay = 0.99995) exhibits a very slow rise in win rate and fails to reach the performance levels
of the other agents within the allotted training episodes. This highlights the drawback of excessive exploration
in Reinforcement Learning Models: the agent spends too much time trying random actions and not enough time
refining and exploiting effective strategies.

2.1.2 B affect on training trajectory

Model Performance Across Different Batch Sizes
Win Rate Over Training Episodes (Smoothed)

Win Rate (%)
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Figure 4: Enter Caption



In this experiment, the following parameters were fixed: €gecay = 0.999, €start = 0.9, €ena = 0.001, U = 10,
a =0.0001, vy = 0.9, £ = 10000, A =18 — 32 — ReLU — 32 — ReLU — 9. The batch size B was varied as

B € {8,16,32,64, 128,256, 512}

The results show that batch size has a significant effect on the agent’s learning trajectory and final performance:
Smaller batch sizes (B = 8,16, 32) lead to the fastest initial rise in win rate, with B = 8 and B = 16 reaching high
win rates (above 90%) within the first 4000-6000 episodes. These agents are able to quickly adapt their policies,
likely due to more frequent updates and higher variance in gradient estimates, which can help escape local optima
early in training. Moderate batch sizes (B = 64,128) also achieve high win rates, but their improvement is more
gradual. They eventually reach similar performance to the smallest batch sizes, but require more training episodes
to do so.

Larger batch sizes (B = 256,512) result in much slower learning. These agents exhibit a delayed increase in win
rate and, within the allotted training episodes, do not reach the same level of performance as agents trained with
smaller batches. This is likely because larger batches provide more stable but less frequent updates, which can slow
down the learning process and reduce the agent’s ability to quickly adapt to new information.

2.1.3 « affect on training trajectory

Model Performance Across Different Learning Rates
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In this experiment, the following parameters were fixed: B = 64, €decay = 0.9, €start = 0.9, €ena = 0.001, U = 10,
~=10.9, £ =10000, A =18 — 32 — ReLU — 32 — ReLU — 9. The learning rate « was varied as

a € {0.00001, 0.00005, 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1}

The choice of learning rate had a substantial impact on both the speed of training and the final performance.
Moderate learning rates (o = 0.0005,0.001,0.005) achieve the best performance, with win rates rising quickly and
plateauing above 90%. These values allow the agent to make sufficiently large updates to learn efficiently, without
causing instability. Very small learning rates (« = 0.00001,0.00005,0.0001) result in much slower learning. The
win rates for these agents increase only gradually, and do not reach the same performance. This is likely because
the updates are too small for the agent to effectively adapt its policy.

Very large learning rates (o = 0.01,0.05,0.1) lead to poor or unstable performance. The win rates for these agents
either stagnate at a low value or fluctuate significantly, indicating that the updates are too aggressive and may
cause the agent to overshoot optimal solutions or fail to converge.



2.1.4 A affect on training trajectory

Model Performance Across Different Network Architectures
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In this experiment, the following parameters were fixed: B = 64, €decay = 0.99, €start = 0.9, €ena = 0.001, U = 10,
a = 0.0001, v = 0.9, £ = 10000. The network architecture A varies as portrayed in the legend.

The network architecture had a substantial impact on both the speed of training and the final performance. Larger
and moderately sized architectures (such as 18 — 64 — ReLU — 64 — ReLU — 9 and 18 — 32 — ReLU —
32 — ReLU — 9) achieve the highest win rates, rising quickly and plateauing above 90%. These architectures have
enough capacity to represent effective policies and learn efficiently from experience.

Very deep or very narrow architectures (such as those with multiple layers of size 4 or 8) tend to learn more slowly
and plateau at lower win rates. This suggests that either too little capacity (narrow networks) or excessive depth
(without sufficient width) can hinder learning in this environment.

Intermediate architectures (e.g., 18 — 16 — ReLU — 16 — ReLU — 9) show moderate performance, with win
rates rising steadily but not reaching the highest levels achieved by the wider networks.

Overall, these results illustrate that: Wider and moderately deep networks are best suited for this task, enabling
fast and effective learning. Very deep or very narrow networks may struggle to learn optimal policies, either due
to insufficient capacity or optimization difficulties.

This highlights the importance of tuning the network architecture in deep reinforcement learning. An appropriately
chosen architecture allows the agent to efficiently learn from experience and achieve high performance, while
architectures that are too small or too deep may impede learning and result in suboptimal performance.

2.2 REINFORCE vs. DQN

Our REINFORCE implementation featured a similar architecture but with larger hidden layers (64 neurons each)
and a lower learning rate of 0.0001 to improve training stability for this policy gradient approach. As is standard
with REINFORCE, it does not use experience replay, discount factors, or epsilon-greedy exploration mechanisms.
Results are given in Figure [7}
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Figure 7: Performance comparison between DQN and REINFORCE agents in n-dimensional Tic-Tac-Toe. DQN
outperforms REINFORCE with a substantially higher win rate and lower loss/draw rates.

The experimental results show a clear performance advantage for DQN in the Tic-Tac-Toe environment. DQN
achieved a 97.31% win rate with only 1.67% losses and 1.02% draws. In contrast, REINFORCE managed a 72.78%
win rate with significantly higher loss (19.17%) and draw (8.05%) rates. This represents a substantial performance
gap of nearly 25 percentage points in win rate.

The superior performance of DQN can be attributed to several factors inherent to the algorithm. First, DQN’s
value-based approach provides more stable learning signals in a deterministic game like Tic-Tac-Toe. Second,
the experience replay mechanism enables more efficient use of training data by breaking correlations between
consecutive samples. Finally, the structured e-greedy exploration strategy more effectively balances exploration
and exploitation compared to the policy stochasticity that REINFORCE relies on.

These results suggest that for discrete, deterministic environments with clear reward structures like Tic-Tac-Toe,
DQN offers significant advantages over policy gradient methods like REINFORCE. Despite REINFORCE using
a higher-capacity network, it was unable to match DQN’s ability to efficiently learn the optimal policy for this
particular task.

2.3 Music Recommender

In this experiment, we use the Kaggle Spotify Dataset [7] in order to create an agent that responds to user feedback
and adapts music recommendations accordingly. First, we use k-means to cluster the dataset based on 7 of the
numerical features, described in Table

Feature Description

Valence A measure from 0.0 to 1.0 describing the musical positiveness
conveyed by a track (higher means more positive).

Acousticness Confidence measure (0.0 to 1.0) of whether the track is acoustic.

Danceability Describes how suitable a track is for dancing based on tempo,
rhythm stability, beat strength, and regularity.

Energy Represents a perceptual measure of intensity and activity; ranges
from 0.0 (low energy) to 1.0 (high energy).

Instrumentalness Predicts whether a track contains no vocals; the closer to 1.0, the
more likely it is instrumental.

Liveliness Detects the presence of an audience in the recording; higher values
indicate a more “live” feel.

Speechiness Detects the presence of spoken words; values closer to 1.0 suggest

more speech-like tracks.

Table 3: Descriptions of selected Spotify audio features from the dataset.



To obtain the clustering, we allow for different options in order to explore performance. The standard approach
is to cluster directly on the 7-dimensional data points, and to then use the MAB (e-greedy versus UCB) to learn
a policy for how to select which cluster to recommend songs from. However, we also incorporate PCA in order to
project the data down into a lower dimensional subspace, after which clustering may occur. In doing so, we are
able to find the optimal dimension for the clustering that in turn impacts MAB performance. We also use PCA to
visualize the data in 2-dimensions. A summary of the models evaluated with this experiment is given in Table [4

Model How it is Used in the Experiment

k-means k-means is used to cluster music tracks based on ex-
tracted features. The algorithm groups the tracks
into distinct clusters, which allows the recommender
system to identify similar tracks. Each cluster rep-
resents a group of musically similar tracks.

PCA (Principal Component Analysis) | PCA is used to reduce the dimensionality of the fea-
ture space before applying k-means. It projects the
data from 7 dimensions to 2 dimensions for easier
visualization of the clustering process.

MABs (Multi-Armed Bandits) Both e-greedy and UCB (Upper Confidence Bound)
strategies are used to learn which cluster (or ”arm”)
to recommend to users. The bandit algorithms ex-

plore and exploit the different clusters based on user
feedback.

Table 4: Models Used in the Music Recommender Experiment and Their Application

After clustering, the MAB pulls one of the arms (the clusters) to suggest a song for the user. The user
responds with a reward from 1-10, which is used to update the MAB. The process continues, and over time, the
MAB gradually learns the user’s preferences and dynamically adapts its recommendations. In practice, such a
recommender would be integrated with a user’s device and track statistics over thousands of episodes. We devised
a method to circumvent the need for human feedback and to approximate the quality of recommendations. First,
we create a user vector v € R7 where each v; € [0, 1], indicating how much the user likes the i-th feature in
k-means clustering is performed, and then with each recommended song (denote as w € R”, we compute the reward

as follows:
r=1.0+9.0 {a <20.0. (”w> - 0.55)}
[[v][2]|w]|2

where o denotes the sigmoid function and m is the cosine similarity between the user vector v and song
vector w. Due to the compactness of the data, we introduced the bias shift 0.55 to control the threshold at which
the sigmoid function outputs values greater than 0.5. We scale by 20.0 to introduce a greater degree of variance
and heightened sensitivity. Lastly, we multiply by 9.0 and add 1.0 in order to scale the reward signal between 1
and 10, as proposed in the setup above. With these reward signals, we run 1000 iterations and allow the MAB to
explore the reward signals. We track two metrics:

1. Total reward (The total reward accrued since timestep 1
2. Average reward per timestep (The total reward, normalized over time t)

A summary of results can be seen in Figure [§
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Figure 8: Comparison of UCB and e-Greedy MABs for reward exploration

Within 200 episodes, both e-Greedy and UCB Have converged, as evidenced by their average reward per

timestep plateauing. The figures also includes a sliding window over 10 episodes that calculates the current reward
signal average over the last 10 timesteps, which is denoted by the dotted line on the right. As expected, UCB
outperformed e-Greedy as e-Greedy committed to a suboptimal arm. By suboptimal, we refer to the fact that each
arm has different mean reward signals, and some are noisier than others, so e-Greedy did not explore the reward
space sufficiently to commit to the optimal arm. This is because e-Greedy is choosing from one of the k£ = 10
arms uniformly at random with probability €, which is decaying over time. Conversely, the more sophisticated
UCB algorithm also takes into account the number of times it has pulled an arm, which increases as uncertainty
decreases over time. So, UCB is able to learn quicker which arm has the potential of giving the highest reward.
We see this emirically due to UCB’s fast convergence, as evidenced on the right.
These results above empirically confirmed that UCB can outperform e-Greedy, particularly on our given task.
We then proposed the research question of how k (the number of arms/clusters) impacts reward performance,
and similarly how the projection dimension impacts performance. In the above experiment, we used k£ = 10 and
dim = 2. Now, we vary k and the dimension for both e-Greedy and UCB and seek to measure total reward, average
reward, and convergence time. To measure convergence time, we use a different approach for e-Greedy and UCB.
This is because when € > 0.5, we are exploring with a greater probability than acting greedily, so convergence does
not make sense in this case. A visual of the algorithm can be seen in Figure [0}

Final 25% of Training

; Optimal Performance
R - Threshold (0.85x optimal)
I I : » Training Steps (Rewards)
25% 50% 5% 100%

Sliding| Window

.’I‘hreslnold

Check if > 90% of rewards
in window are above threshold

Algorithm Type Adjustments:
e UCB: Smaller window (50)

e c-greedy: Larger window (100)

e c-greedy: Skip first 10%

First
Convergence Point

Figure 9: Sliding window convergence criteria used to determine training convergence.

Because convergence is final, we first examine the final 25% of iterations. From these, the top 10% of rewards
are extracted to get a sense of the model’s best performance. We then apply a threshold value of 0.85 to these
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values. As seen in Figure [0] the optimal reward signals are marked as 'Optimal Performance,” and the dotted
red line below denotes the 'Threshold.” We threshold due to the inherent noise in reward signals. Using a sliding
window of 50 for UCB or 100 for e-Greedy, we check if > 90% of the reward signals within the window are above
the threshold, and if they are, then convergence is detected. Moreover, for e-Greedy, we also skip the first 10% of
reward signals due to the aforementioned exploration occurring early on in training. A summary of our results for
the number of arms/clusters k experiment can be seen in Figure
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Performance Analysis Across K for Ucb
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(b) UCB performance vs. k

Figure 10: e-Greedy vs. UCB MAB performance vs. k

For e-Greedy, we observe that a non-monotonic reward signal. This is because as we increase k, our e-greedy
exploration policy breaks down. The more arms to choose from, the more exploration is required and the less
effective the uniform distribution exploration policy will be at learning. However, a higher k can sometimes result
in further separation between the mean reward signal of each arm, which in turn makes e-greedy more effective,
which is why we do not see a consistent trend. For convergence time, we actually only see convergence for k = 5, 20,
and 35, which further confirms the non-consitency and randomness in e-greedy’s performance, which makes it an
undesirable choice. For the more sophisticated UCB, we have a ”corner” in performance at k = 15, and clearly
see a downwards trend afterwards, which indicates that £ = 15 is the clear optimal choice. This choice of k likely
separates out the reward signal means just enough, while also making exploration an easy enough task. For UCB,
we always converge, and as k increases, convergence takes longer as expected, due to more means to explore.
Next, the results of varying the projection dimension are given in Figure
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Performance Analysis Across Dimension for Eps-Greedy
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Figure 11: e-Greedy vs. UCB MAB performance vs. projection dimension

In general, we see less strong trends as the dimension is varied because performance is contingent on PCA’s
accurate computation of the eigenvectors. For e-Greedy, we see a peak in performance at a projection dimension
of 5, which likely could have performed even better since it had not converged yet. For UCB, we see a clear boost
in performance at a projection dimension of 3, which holds steady until the full dimension 7. This is likely due
to the fact that the 2D projection space is likely too small of a subspace for the data to be separated, leading to
poor clustering. Similarly, the full dimension of 7 likely starts to suffer from the curse of dimensionality, where
there is sparsity of data and distance metrics like those used in k-means begin to break down, also leading to poor
convergence. Overall, we are able to conclude that our music recommendation task is best accomplished using
UCB (for faster/better convergence times) with & = 15 and a projection dimension d € {3,4,5,6}. Our results
confirm empirically Reinforcement Learning Theory such as convergence times and better reward signals, and they
illustrate phenomenons such as the curse of dimensionality in our particular use case.

2.4 Binary Classification

To evluate our binary classification/regression models, we use the popular Iris dataset [3]. This involves the
classification of three different species of flowers, Setosa, Versicolor, and Verginica. This dataset is particularly
useful because Setosa vs. Versicolor/Verginica is actually learnable via a linear decision boundary, which is useful
for evaluating Perceptron and SVM. Likewise, the boundary between Versicolor/Verginica is nonlinear and requires
nonlinear approaches, like k-NN. For reference, we report the SVM linear boundary on the nonlinear task as well,
which underperformed at 55% accuracy. A summary of the models evaluated with this experiment is given in Table
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Binary Classification: Setosa vs Others Multi-class Classification

Binary: Setosa vs Others Non-linear & Multi-class Classification
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Model Details: Model Details:
e Perceptron: 100000 iterations, 96.67% accuracy e Linear SVM: Versicolor vs Virginica using petal
e SVM: C=10.0, 100 iterations, Ir=0.0001, 83.33% dimensions, C=10.0, 100 max iterations, lr=0.0001,
accuracy 55% accuracy
e Linear Regression: On petal length, threshold < e K-NN: k=5, 100% accuracy
2.0 for Setosa, Ir=0.0001, 70% accuracy e Neural Network: 3-class, all 4 features, 2 hidden

layers (64 units each), Ir=0.01, 1000 epochs, batch
size 64, 96.67% accuracy

Figure 12: Performance comparison of different machine learning models on the Iris dataset classification tasks.
The left panel shows binary classification results for separating Setosa from other species. The right panel shows
performance on the more difficult Versicolor vs. Virginica binary task and the full three-class classification problem.

As evidenced by the data, Perceptron and SVM were both able to effectively separate the linear decision
boundary. We were able to use our Linear Regression model on the binary task as well by predicting the continuous
petal length feature and applying a threshold < 2.0 to convert to a positive label, negative otherwise. However,
linear regression performs worse at 70% accuracy, which is likely due to the conversion to binary from continuous
and the indirect approach.

For the non-linear cases, we can see that k-NN with just £ = 5 was sufficient to classify between Versicolor and
Verginica using both petal length and width, which is a nonlinear boundary. Similarly, neural networks with a
simple architecture and mini-batch SGD optimization were able to classify between all 3 classes effectively using

all 4 features.

2.5 Compiler Optimizations

One reason we chose to build our machine learning library in C++ is to take advantage of low-level compiler
optimization options that are not available in Python, the standard language used for machine learning. Although
PyTorch has bindings for C++, there are still parts of the code, such as loops, that will be exposed in Python and
cannot be optimized. In our library, every part of the code can be optimized to generate highly efficient machine
code tailored to the target hardware. These optimizations are especially impactful for compute-intensive operations
such as matrix multiplcation and neural netwrk forward/backward passes.

To evaluate the effect of compiler optimizations on our project, we trained a DQN Agent to play Tic Tac Toe using
the following configuration: A4 = 18 — 32 — ReLU — 32 — ReLU — 9, o = 0.0001, €g4ary = 0.9, €eng = 0.001,
B=64 v=0.9, & =100. We tested the following optimization levels:

e No optimization flags — Baseline, no compiler optimizations
e -01 — Basic optimizations

e -02 — More aggressive optimizations

e -03 — Enables function inlining, loop unrolling, vectorization

e -03 -ffast-math — Adds aggressive floating-point math optimizations

e All flags —-03 -ffast-math -funroll-loops -flto -march=native -mtune=native -fomit-frame-pointer

-finline-functions -fstrict-aliasing. This combination applies maximum optimization:
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— —funroll-loops — Unrolls loops to reduce branching and increase instruction-level parallelism
— -flto — Link Time Optimization enables optimizations across translation units

— -march=native -mtune=native — Generates code optimized for the local machine’s architecture and
tuning parameters

— —fomit-frame-pointer — Omits the frame pointer to free up a register
— -finline-functions — Aggressively inlines functions to reduce call overhead

— -fstrict-aliasing — Assumes that pointers to different types do not alias, enabling more aggressive
reordering

As shown in the table, compiler optimizations have a significant impact on training time. With no optimizatino
flags, training is about 26 times slower than when using the most aggressive optimization flags. These results show
the importance of leveaging compiler-level optimizations when building performance-critical Al software.

Optimization Level Avg. Training Time (ms)

No optimization flags 8345.10
-01 713.20
-02 392.30
-03 375.90
-03 -ffast-math 367.70
All flags 316.60

Table 5: Average training time (in milliseconds) over 10 runs for 100 episodes of training under different compiler
optimization levels
In summary, were able to effectively implement a low-level C+4 Al library that is robust to a multitude of
applications, as seen in experiments 1-3. Likewise, due to C++’s exposure of memory control and management,
we are able to have a finer-grained control over our library than an analogous implementation in an interpreted
language like Python. As seen in experiment 4, this effect is acutely pronounced with compiler optimizations
significantly impacting performance. In all, we hope to demonstrate that Al applications in C++ are robust and
more importantly, economical in the current, power-hungry Al landscape.
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